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Volterra series provides a strong platform for non-linear analysis and higher order
frequency response functions. However, limited convergence is an inherent di$culty
associated with the series and needs to be addressed rigorously, prior to its application to
a physical system. The power series representation of the response of non-linear systems,
subjected to harmonic excitation is investigated in this study. The problem of convergence is
addressed in terms of the convergence of individual frequency harmonics of the non-linear
response. Though the procedure is applicable to general polynomial form non-linearity,
it is illustrated for a Du$ng oscillator subjected to harmonic excitation. A general and
structured series expression is obtained for amplitudes of all the response harmonics and
convergence is investigated in terms of a non-dimensional non-linear parameter. Critical
values of this parameter, representing the upper limit of excitation level for the convergence,
are de"ned for a wide range of excitation frequencies. Zones of convergence and divergence
of the response series are presented graphically, for a range of the non-dimensional
non-linear parameter and the number of terms included in the approximation of a response
harmonic. An algorithm based on ratio test is presented to compute the critical value of the
non-dimensional non-linear parameter. Results obtained from the suggested algorithm are
found to be in close agreement with the exact values. The method gives better results
compared to previous methods and has wider application in terms of excitation frequency.
The procedure is also investigated for a two-degree-of-freedom system.

( 2000 Academic Press
1. INTRODUCTION

The functional form representation of input}output relationship through Volterra series
[1, 2], provides a structured and convenient mathematical platform for the study of
non-linear systems. It employs multidimensional kernels, which upon convolution with the
applied excitation, express the response in the form of a power series. The Volterra series,
being an in"nite power series with memory, however su!ers from the problem of limited
convergence and has been applied in relatively fewer situations [3}5]. It is required to be
truncated to a "nite number of terms, in all practical computations and may lead to large
errors. The problem is sought to be overcome, through formation of an orthogonal set of
Wiener kernels [6] from Volterra functionals, for white Gaussian inputs. Applications
based on Wiener kernels can be found in [7}11]. Since the Wiener series analysis is carried
out for Gaussian white excitation, its practical application involves statistical errors and
limitations. Moreover, Wiener kernels are excitation level dependent and need to be
converted to Volterra kernels, for their translation into system characteristics [12]. Studies
[13, 14] on the convergence aspects of Volterra series, have been relatively few. Sandberg
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[15] has shown that a truncated Volterra series provides a uniform approximation to the
in"nite Volterra series on a ball of bounded input for a large class of systems. Analysis and
identi"cation of non-linear systems by harmonic excitation using Volterra series theory
have been reported in references [8, 16, 17]. Sti!ness non-linearity is commonly observed
under large excitation force. Tomlinson and Manson [18] studied the convergence of "rst
order FRF of a Du$ng oscillator under harmonic excitation and presented a simple
formula for determining the upper limit of excitation level. However, the formula gives
accurate results only at resonant frequency and for a two-term Volterra approximation.
At driving frequencies away from natural frequency and for higher order Volterra
approximation, results deviate signi"cantly from the exact ones. In this paper, convergence
of the response harmonics for a Du$ng oscillator under harmonic excitation is studied in
terms of a non-dimensional non-linear parameter. A convergence criterion, based on the
number of terms in the approximation of a response harmonic, is suggested. Critical values
of the non-dimensional non-linear parameter, are de"ned for convergence. Numerical
computation is carried out, using an algorithm based on ratio test. Zones of convergence
and divergence are speci"ed in terms of the non-linear parameter and number of terms in
the series. The convergence criteria improves upon that by Tomlinson by de"ning a critical
value of the non-dimensional non-linear parameter as a function of excitation level,
excitation frequency and the number of terms in the Volterra series approximation.
Convergence of two-degree-of-freedom systems subjected to harmonic excitation is also
discussed.

2. VOLTERRA SERIES RESPONSE REPRESENTATION

A single-degree-of-freedom system, with general polynomial form of non-linearity is
considered

mx( (t)#cxR (t)#kx (t)#g[x (t), xR (t)]"f (t). (1)

f (t) is the harmonic excitation,
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and the non-linear term g[x(t), xR (t)] is expressed in general polynomial form as
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Using Volterra series representation [1] of the response, x(t) is expressed as
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Employing the above, the individual response components (equation (5)), can be expressed,
after some algebra as
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where the following brief notations have been used:
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The total response of the system then becomes
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Combinations of di!erent p and q result in various response harmonics at frequencies
u

p,q
and the response can be written in terms of its harmonics as
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3. CONVERGENCE FOR A DUFFING OSCILLATOR

For a Du$ng oscillator, accounting for sti!ness non-linearity alone, and excited by the
harmonic force of equation (2), the governing equation is
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equation (12) can be rewritten in non-dimensional form as
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where ( @ ) denotes di!erentiation with respect to q.
Using expression (9), similar series form for the non-dimensional response z(q) would be
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Substitution of the Volterra series of equation (14), in the equation of motion (13) yields
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Applying the method of harmonic probing [8] and equating the coe$cients of (1/2)n e+rp,qq ,
one obtains
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n
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Each of the response harmonics Z(nr) can be seen to be comprised of an in"nite power
series
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The practical estimation of a harmonic can incorporate only a "nite number of terms of the
in"nite series (18). The convergence of the response harmonic then would be speci"c to the
number of terms included in the analysis. Con"ning the power series to include a "nite
number of terms, k, the approximation for the nth harmonic can be denoted as

k
Z(nr)"

k
+
i/1

p
i
(nr) (20)

and the relative error between the above approximation and the exact amplitude of the
harmonic is

n
k
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4. NUMERICAL ILLUSTRATION

The response of the governing equation (13) is computed numerically in non-dimensional
form, through fourth-order Runge}Kutta method. Figures 1(a) and 1(b) typically show the
non-dimensional response z (q) and amplitudes of dominant response harmonics for
r"0)35, j"0)04. Amplitudes of various response harmonics, Z(r),Z(3r), etc., are obtained
through Fourier analysis or harmonic "ltering of the response z(q). These are termed as the
&&exact'' response harmonics.

The Volterra series response is synthesized by considering the series in equation (18) up to
k number of terms. Each series term, p

i
(nr), i"1, 2,2, k, is computed from equation (19),

in which the higher order kernel transforms Hn`i~1,i~1
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(r) are obtained by step-by-step
reduction into lower order transforms using equation (16b). The series form of response
harmonic amplitude Z(r), following equations (18), (19) and (16b) becomes
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Similarly series form of response harmonic amplitude Z (3r) becomes
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Using the above equations, a three-term approximation of Z(r) and two-term
approximation of Z(3r) can be computed directly employing the expression for H

1
(r),

equation (16a). In addition, the overall Volterra series response z(q) can be constructed from



Figure 1. Typical non-dimensional response z(q) and its dominant harmonic amplitudes, (j"0)04, excitation
frequency at r"0)35): (a) response z(q); (b) response spectrum DZ (r)D.
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the response harmonic amplitudes as
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Figures 2(a) and 2(b) show the phase-plane trajectories of response synthesized from
Volterra series approximation and response obtained from numerical integration for
a typical non-dimensional frequency, r"0)6. Convergence of Volterra series response can



Figure 2. Phase-plane trajectories of response obtained from Volterra series and from numerical integration:
(a) r"0)6 and j"0)05; (b) r"0)6 and j"0)1. **, rk-4; } } } } 1-term Volterra; ) ) ) ) , 2-term Volterra.
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be graphically represented by the proximity of the trajectory to that of response obtained
from numerical integration. It can be seen that the phase plot of a two-term Volterra series
is closer to the exact one than the single-term Volterra series, indicating a converging trend.
The phase plots also highlight the alternating nature of the Volterra series in this case and
show that better convergence is obtained with lower values of j. However, the phase-plane
comparison can be used for the convergence study of total response only.
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Convergence of individual response harmonic amplitudes is analyzed by computing the
relative errors n

k
e (equation (21)), for various values of non-dimensional non-linear

parameter j. The variation of the relative errors, 1
k
e and 3

k
e, between the &&exact'' and k-term

approximations of the harmonics for various values of k and non-dimensional non-linear
parameter, j, have been plotted in Figures 3(a) and 3(b) (for non-dimensional excitation
frequency, r"0)6). The errors can be seen to decrease up to a certain number of terms in the
approximation, beyond which they display an increasing trend. The number of terms up to
which the error, for the nth harmonic and a given j, shows a decreasing trend can be
denoted as nk

crit
. It can be observed that for j"0)08, 1k

crit
"4 in the case of the 1st

harmonic and the optimum number of terms in the response series should be four. Similarly,
three-term series is optimum for representing the 3rd harmonic for j"0)08. The
approximation errors have been shown as a function of the non-linear parameter j, for
k"1 to 4, in Figures 4(a) and 4(b). The plots in Figures 3 and 4 can be utilized to de"ne
a critical value n

k
j
crit

, of the non-dimensional non-linear parameter, to get convergence in
Figure 3. Variation of relative errors with the number of terms, k, in the response harmonic approximation, (for
case r"0)6): (a) 1st harmonic; *e*, j"0)07; *h*, j"0)08; *n*, j"0)09; *]*, j"0)11. (b) 3rd
harmonic; *e*, j"0)06; *h*, j"0)07; *n*, j"0)08; *]*, j"0)09.



Figure 4. Relative errors in response harmonics for various values of non-dimensional parameter j, (for case
r"0)6): (a) 1st harmonic; (b) 3rd harmonic. *e*, k"1; *h*, k"2; *n*, k"3; *]*, k"4.
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a k-term approximation of the nth harmonic. It should be noted that the non-dimensional
non-linear parameter j, involves the non-linear sti!ness term k

3
as well as the harmonic

force amplitude A, and the critical values n
k
j
crit

, can be suitably employed to decide the
excitation levels in experiments. The critical value, n

k
j
crit

, can be de"ned as the maximum
value of j, for which n

k
e(n

k~1
e, n

k~2
e,2, n

1
e. For a four-term approximation of the 1st

harmonic, the critical value 1
4
j
crit

, of the non-linear parameter is found to be 0)082
(Figure 4(a)), while for a three-term approximation, 1

3
j
crit

is obtained as 0)098 (Figure 4(a)).
The critical values 1

k
j
crit

and 3
k
j
crit

(for harmonics n"1 and 3) are plotted in Figures 5(a) and
5(b) respectively, for k ranging from 2 to 7. As shown, these "gures help to de"ne the zones of
convergence and divergence of a response harmonic as a function of the non-dimensional
parameter j and the number of terms, k, in the approximation. As an example, if the value of
the non-dimensional non-linear parameter j, of a given system is 0)1, then only the "rst
three terms, i.e., k"3, in the approximation, will give a converging solution for the 1st
harmonic (Figure 5(a)). For a lower value of j"0)07, converged solution is obtained till six
terms (k"6) in the approximation. Similar pattern can be observed in the case of the 3rd
harmonic, given in Figure 5(b). It is obvious that better accuracy can be obtained with lower



Figure 5. Zones of convergence and divergence, (r"0)6): (a) 1st harmonic; (b) 3rd harmonic. *h*, error
simulation; *]*, ratio test.
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values of j, since more number of terms can be included in the approximation of the
response harmonics. Figures 3}5 pertain to a non-dimensional excitation frequency, r"0)6.
The excitation frequency is varied over a range and the critical values of j are plotted for
k ranging from values 2 to 7, in Figures 6(a)}6(f ) for the 1st harmonic and Figures 7(a)}7(c)
for the 3rd harmonic. It can be seen that approximations with low values of k either
completely miss out on the 1/3 and 1/5 subharmonics at r"0)33 and r"0)2 respectively, or
give non-converging solutions. Critical values n

k
j
crit

can be seen to be low at these
frequencies. This fact is discussed in the next section.

5. RATIO TEST FOR CONVERGENCE

The procedure for "nding the critical value, of the non-dimensional parameter, through
numerical simulation, needs iterative computation over a large number of values of j.



Figure 6. Variation of critical non-dimensional parameter, 1
k
j
crit

, with the non-dimensional frequency, r :
(a) k"2; (b) k"3; (c) k"4; (d) k"5; (e) k"6; (f ) k"7. *h*, error simulation; *]*, ratio test;
v, Tomlinson.
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Alternately, n
k
j
crit

can be determined through application of a simple ratio test to the power
series (19). n

k
j
crit

can be de"ned, for a k-term approximation of the nth harmonic, as the
limiting value of j, for which all the successive terms, up to k in the approximation, show
a decreasing trend, i.e., j"n

k
j
crit

for the limiting case:
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Figure 7. Variation of critical non-dimensional parameter, 3
k
j
crit

, with the non-dimensional frequency, r :
(a) k"2; (b) k"3; (c) k"4; (d) k"5; (e) k"6. *h*, error simulation; *]*, ratio test.
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Employing equation (16b) to express the higher order kernels, in the above, in terms of
lower ones, the ratio can be seen to be a function g

k
, of the kernel transforms
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K
1

4

n`2k~2C
k~1

Hn`k~1,k~1
n`2k~2

(r)
n`2k~4C

k~2
Hn`k~2,k~2

n`2k~4
(r) K"jg

k
[H

1
(r),H

1
(3r),H

1
(5r),2] (27)

providing n
k
j
crit

as

n
k
j
crit

"1/g
k
[H

1
(r),H

1
(3r),H

1
(5r),2]. (28)



CONVERGENCE ANALYSIS OF VOLTERRA SERIES 351
Using equations (27) and (28), n
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crit

can be computed as
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For the 1st and 3rd harmonics, n"1 and n"3, one obtains
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(the subscript on the right-hand side of the above expression denotes that the ratio has been
computed at a value of j"1).

The value of n
k
j
crit

obtained from ratio test is an approximation of its correct value, which
is obtained through the error divergence criterion, discussed earlier and illustrated through
numerical simulation. However, the approximation of n

k
j
crit

through the ratio test is fairly
good and has been shown, along with the numerically simulated one, in Figures 6(a)}6(f )
and 7(a)}7(e) for the 1st and 3rd harmonic respectively. As k increases, the critical
value n

k
j
crit

obtained from ratio test gets closer to the exact one obtained from error
simulation. For k'3 ratio test gives very accurate results over a wide range of excitation
frequencies. The ratio test also helps to understand the low values of n

k
j
crit

at the natural
frequencies and subharmonics. It can be seen from equation (28) that the ratio
Dp

k
(nr)/p

k~1
(nr)D is of the order of jDH

1
(nr)D3 and the term DH

1
(nr)D assumes a large value for

r"1/n, making n
k
j
crit

too small to satisfy convergence criterion given by equation (25).
Figures 6 and 7 also show a comparison with the results of Tomlinson [18], who carried out
a ratio test on truncated expansion of equation (16b) for higher order kernel transforms.
Tomlinson's formula gives reasonable values of the critical parameter only at r"1 and for
k"2, i.e., for a two-term series approximation. Away from natural frequency and for k'2
the results deviate considerably from the exact ones, since Tomlinson's formula employs
a truncated form of p

i
, by considering their "rst terms alone. However, subsequent terms of

p
i
can be of the same order as its "rst term, as they may involve kernels of the same order.

Also, the error was computed by Tomlinson by averaging over a range of excitation
frequencies. Such averaging may entail a large error, since the kernels are frequency
sensitive and the critical value of the non-linear parameter j should be treated as speci"c to
the excitation frequency. Moreover, Tomlinson's analysis was restricted to the "rst
harmonic Z(r) and its convergence was taken to conclude the convergence of the Volterra
series.

6. CONVERGENCE FOR A TWO-DEGREE-OF-FREEDOM SYSTEM

The convergence study is extended to the case of a coupled two-degree-of-freedom system
with cubic non-linearity in sti!ness, given as
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De"ning non-dimensional parameters

q"Jk
xx

/m
x
t, xz (q)"x/X

st
, yz (q)"y/X

st
, X

st
"f

.!9
/k

xx
,

fM
i
(q)"f

i
(q)/f

.!9
, i"1, 2,

1
ii
"

c
ii

2Jk
xx

m
x

, jL
ij
"

k
ij

k
xx

, jN
ij
"

kN
ij

f 2
.!9

k3
xx

, i"x, y and j"x, y k"m
y
/m

x

analysis is carried out further with the following non-dimensional equations:

xzA(q)#21
xx

xz@(q)#xz(q)#jL
xy

yz (q)#jN
xx

xz3(q)#jN
xy

yz3(q)"fM
1
(q),

kyzA(q)#21
yy

yz@(q)#jL
yy

yz(q)#jL
yx

xz (q)#jN
yy

yz3(q)#jN
yx

xz3(q)"fM
2
(q). (33)

Volterra series expression for the response gz (q), g denoting x or y, would be

gz (q)"gH
0
# +

i/1,2

gH(i)
1

[ fM
i
(q)]# +

i/1,2

+
j/1,2

gH(i,j)
2

[ fM
i
(q), fM

j
(q)]

# +
i/1,2

+
j/1,2

+
k/1,2

gH(i,j,k)
3

[ fM
i
(q), fM

j
(q), fM

k
(q)]#2

where

gH(i)
1

[ fM
i
(q)]"P

=

~=

gh(i)
1
(q) fM

i
(q!q

1
) dq

1
, i"1, 2

gH(i,j)
2

[ fM
i
(q), fM

j
(q)]"P

=

~=
P

=

~=

gh(i,j)
2

(q) fM
i
(q!q

1
) fM

j
(q!q

2
) dq

1
dq

2
,

for i"1, 2 and j"1, 2,

gH(i,j,k)
3

[ fM
i
(q), fM

j
(q) fM

k
(q)]

"P
=

~=
P

=

~=
P

=

~=

gh(i,j,k)
3

(q) fM
i
(q!q

1
) fM

j
(q!q

2
) fM

k
(q!q

3
) dq

1
dq

2
dq

3

for i"1, 2, j"1, 2 and k"1, 2.

For a single-tone non-dimensional harmonic excitation

fM
1
(q)"e+rq/2#e~+rq/2; fM

2
(q)"0 with r"u/Jk

xx
/m

x

the response is

gz (q)"
=
+
n/1
A
1

2B
n

+
p`q/n

nC
q
gHp,q

n
(r) e+rp,qq. (34)
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Substituting equation (34) into equation (33) gives

=
+
n/1
A
1

2B
n

+
p`q/n

nC
q
xHp,q

n
(r) e+rp,q q[!r2

p,q
#1#j21

xx
r
p,q

]

#jL
xy

=
+
n/1
A
1

2B
n

+
p`q/n

nC
q
yHp,q

n
(r) e+rp,qq

#jN
xx C

=
+
n/1
A
1

2B
n

+
p`q/n

nC
q
xHp,q

n
(r) e+rp,q qD

3

#jN
xy C

=
+
n/1
A
1

2B
n

+
p`q/n

nC
q
yHp,q

n
(r) e+rp,q qD

3
"

e+rq
2

#

e~+rq
2

, (35)

=
+
n/1
A
1

2B
n

+
p`q/n

nC
q
yHp,q

n
(r) e+rp,qq[!kr2

p,q
#1#j21

yy
r
p,q

]

#jL
yx

=
+
n/1
A
1

2B
n

+
p`q/n

nC
q
xHp,q

n
(r) e+rp,qq

#jN
yy C

=
+
n/1
A
1

2B
n

+
p`q/n

nC
q
yHp,q

n
(r) e+rp,qqD

3

#jN
yxC

=
+
n/1
A
1

2B
n

+
p`q/n

nC
q
xHp,q

n
(r) e+rp,qqD

3
"0. (36)

Kernel transforms expressions are obtained by equating the coe$cients of (1/2)n e+rp,q q.
For n"1, one gets

[!r2
1,0

#1#j21
xx

r
1,0

] xH1,0
1

(r)#jL
xy

yH1,0
1

(r)"1,

[!kr2
1,0

#jL
yy
#j21

yy
r
1,0

] yH1,0
1

(r)#jL
yx

xH1,0
1

(r)"0. (37)

Noting that r
1,0

"r, xH1,0
1

(r)"xH
1
(r) and yH1,0

1
(r)"yH

1
(r), the above is simpli"ed as

[!r2#1#j21
xx

r] xH
1
(r)#jL

xy
yH

1
(r)"1,

jL
yx

xH
1
(r)#[!kr2#jL

yy
#j21

yy
r] yH

1
(r)"0, (38)

which provide the de"nitions of the following "rst-order transforms:

xH
1
(r)"

[!kr2#jL
yy
#j21

yy
r]

[!r2#1#j21
xx

r] [!kr2#jL
yy
#j21

yy
r]!jL

xy
jL
yx

,

yH
1
(r)"

!jL
yx

[!r2#1#j21
xx

r] [!kr2#jL
yy
#j21

yy
r]!jL

xy
jL
yx

.
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Equating the coe$cients of (1/2)n e+rp,qq, for n'1, gives

[!r2
p,q

#1#j21
xx

r
p,q

] nC
q
xHp,q

n
(r)#jL

xy
nC

q
yHp,q

n
(r)

# jN
xx

+
pi`qi/ni

n1`n2`n3/n

[n1C
q1

xHp1 ,q1
n1

(r)] [n2C
q2

xHp2 ,q2
n2

(r)] [n3C
q3

xHp3,q3
n3

(r)]

# jN
xy

+
pi`qi/ni

n1`n2`n3/n

[n1C
q1

yHp1 ,q1
n1

(r)] [n2C
q2

yHp2 ,q2
n2

(r)] [n3C
q3

yHp3 ,q3
n3

(r)]"0. (39)

and

[!kr2
p,q

#jL
yy
#j21

yy
r
p,q

] nC
q
yHp,q

n
(r)#jL

yx
nC

q
xHp,q

n
(r)

#jN
yx

+
pi`qi/ni

n1`n2`n3/n

[ n1C
q1

xHp1,q1
n1

(r)] [ n2C
q2

xHp2,q2
n2

(r)][n3C
q3

xHp3 ,q3
n3

(r)]

#jN
yy

+
pi`qi/ni

n1`n2`n3/n

[n1C
q1

yHp1,q1
n1

(r)] [n2C
q2

yHp2 ,q2
n2

(r)] [n3C
q3

yHp3,q3
n3

(r)]"0. (40)

Representing

B
1
"jN

xx
+

pi`qi/ni
n1`n2`n3/n

[n1C
q1

xHp1,q1
n1

(r)] [n2C
q2

xHp2 ,q2
n2

(r)][n3C
q3

xHp3 ,q3
n3

(r)]

#jN
xy

+
pi`qi/ni

n1`n2`n3/n

[n1C
q1

yHp1 ,q1
n1

(r)] [n2C
q2

yHp2 ,q2
n2

(r)][ n3C
q3

yHp3,q3
n3

(r)]

and

B
2
"djN

yx
+

pi`qi/ni
n1`n2`n3/n

[n1C
q1

xHp1 ,q1
n1

(r)][n2C
q2

xHp2,q2
n2

(r)][n3C
q3

xHp3 ,q3
n3

(r)]

#jN
yy

+
pi`qi/ni

n1`n2`n3/n

[n1C
q1

yHp1,q1
n1

(r)][n2C
q2

yHp2 ,q2
n2

(r)] [n3C
q3

yHp3 ,q3
n3

(r)],

solutions of higher order kernel transforms can be obtained as

xHp,q
n

(r)"
!B

1
[!kr2

p,q
#jL

yy
#j21

yy
r
p,q

]#B
2
jL
xy

nC
q
M[!r2

p,q
#1#j21

xx
r
p,q

][!kr2
p,q

#jL
yy
#j21

yy
r
p,q

]!jL
xy

jL
yx

N
, (41)

yHp,q
n

(r)"
!B

2
[!r2

p,q
#1#j21

xx
r
p,q

]#B
1
jL
yx

nC
q
M[!r2

p,q
#1#j21

xx
r
p,q

][!kr2
p,q

#jL
yy
#j21

yy
r
p,q

]!jL
xy

jL
yx

N
. (42)
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Response series (34) can be rearranged, similar to equation (17), in terms of frequency
components as

gz (q)"DgZ (r)D cos(rq#gt
1
)#DgZ(3r) D cos(3rq#gt

3
)#2, (43)

where

gZ(nr)"2
=
+
i/1
A
1

2B
n

n`2i~2C
i~1

gHn`i~1,i~1
n`2i~2

(r), gt
n
"LgZ(nr),

g"x or y and n"1, 3, 5,2

A k-term approximation of the response series would be given by

g
k
Z(nr)"

k
+
i/1

gp
i
(nr), (44)

where

gp
i
(nr)"2 A

1

2B
n

n`2i~2C
i~1

gHn`i~1,i~1
n`2i~2

(r). (45)

The error between above approximation and the exact value of the harmonic is

ge
k
(nr)"D[gZ(nr)!g

k
Z(nr)]/gZ(nr)D.

The approximated response harmonic g
k
Z(nr) can be synthesized after determining the

higher order kernel transforms gHn`i~1,i~1
n`2i~2

(r), using equations (41)}(45). The exact response
harmonics are obtained by fourth order Runge}Kutta numerical solution of equation (33).
The limit of convergence of the response harmonics g

k
Z(nr) is represented by the set of

critical values of the non-dimensional parameters n
k
(jN

xx
, jN

yy
, jN

xy
, jN

yx
)g
crit

. The four
non-dimensional non-linear parameters along with the number of terms k constitute
a "ve-dimensional parametric space which is divided into two regions of convergence and
divergence by the hypersurface represented by all possible sets of n

k
(jN

xx
, jN

yy
, jN

xy
, jN

yx
)g
crit

, for
a given k. For simplicity, cross non-linear sti!nesses, jN

xy
and jN

yx
, are taken as zero in the

present computer simulation. The parametric space, then reduces to three-dimensional
space comprising of jN

xx
, jN

yy
and k.

The following values are considered for computer simulation of equations (33):

k"1)0, jL
xx
"jL

yy
"1)0, jL

xy
"jL

xy
"0)1 and 0)5, 1

xx
"1

yy
"0)01.

De"ning a scaling parameter b"jN
yy

/jN
xx

, the convergence is analyzed numerically as
a function of jN

xx
, b and the number of terms, k, in the response harmonic series. For

a speci"c value of b, the limiting value of jN
xx

for which a k-term series is convergent is
termed as the critical non-dimensional parameter g

k
j(g)
crit

. The variation of this parameter
with the excitation frequency r, for a typical value of k"3, is shown for both x and
y direction response in Figures 8(a) and 8(b). The plots are shown for three di!erent values
of the scaling parameter b"0)1, 1)0, 10)0. These plots pertain to a case of linear coupling
numerically taken as jL

xy
"jL

yx
"0)5. It can be observed that the critical values n

k
j(g)
crit

are
small at the system natural frequencies (which for jL

xy
"jL

yx
"0)5 are r"0)7 and r"1)224)

and their 1/3 subharmonics at r"0)233 and 0)408. It is maximum in the vicinity of the
anti-resonance frequency at r"1)0. Similar characteristics are observed, for a case with



Figure 8. Variation of critical non-dimensional parameter, 1
3
j
crit

, with non-dimensional Frequency, r, for
two-degree-of-freedom system (jL

xy
"jL

yx
"0)5): (a) x-response; (b) y-response. *e*, b"0)1; *h*, b"1)0;

*]*, b"10)0.

Figure 9. Variation of critical non-dimensional parameter, 1
3
j
crit

, with non-dimensional Frequency, r, for
two-degree-of-freedom system (jL

xy
"jL

yx
"0)1): (a) x-response; (b) y-response. *e*, b"0)1; *h*, b"1)0;

*]*, b"10)0.
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weaker linear coupling (jL
xy
"jL

yx
"0)1), in Figures 9(a) and 9(b). However, the coupling

being weak, the e!ect of scaling parameter b is also weaker than in the previous case, of
Figures 8(a) and 8(b).

The critical values n
k
j(g)
crit

discussed above are obtained through the ratio test similar to
that of single-degree-of-freedom system. A comparison of these critical values with those
obtained through iterative simulation is shown in Figures 10(a)}10(c) for various values of
scaling parameter b. The values agree reasonably well for a series with three terms or more.

7. CONCLUSIONS

Convergence limitations of Volterra series expression of non-linear system response have
been studied for Du$ng oscillator under harmonic excitation. The convergence is found to
be a function of the non-dimensional non-linear parameter and also dependent on the
number of terms considered in the response series. Convergence threshold of the series
representation has been de"ned in terms of a critical non-dimensional parameter and an
algorithm based on ratio test has been presented to determine the critical value of the
non-dimensional parameter. The suggested procedure gives accurate estimation of the
critical value over a wide range of excitation frequencies. The method has been extended for



Figure 10. Convergence-divergence zone of two-degree-of-freedom system (x response, r"0)5, jL
xy
"jL

yx
"

0)5): (a) b"0)1; (b) b"1)0; (c) b"10)0. *h*, ratio test; *]*, error simulation.
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a two-degree-of-freedom system. The critical value of non-dimensional parameter in this
case is found to be dependent on the non-linear sti!ness coe$cients as well as on the linear
coupling sti!ness coe$cients. The suggested method can be employed to design
experiments and set the limiting value of harmonic excitation level for a certain number of
terms in the response series.
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